
Algorithm Partitioning and Optimization for Network Processors
Ralf Lehmann

Institute for System Architecture, Chair for Computer Networks
Technische Universität Dresden

01062 Dresden, Germany
email: lehmann@rn.inf.tu-dresden.de

Alexander Schill
Institute for System Architecture, Chair for Computer Networks

Technische Universität Dresden
01062 Dresden, Germany

email: schill@rn.inf.tu-dresden.de

ABSTRACT
Current high speed networks cannot be fully utilized by to-
day’s high end systems. The processing requirements of
next generation network protocols require intelligent net-
work cards with network protocol offload engines, for ex-
ample based on a network processor. To reduce develop-
ment time, we reuse existing software protocol stack im-
plementations for partitioning and implementing on the
network card. Though, manual partitioning is very time-
consuming due to the complex protocol stacks. We outline
an approach for tool supported software partitioning even
for complex C source code.

KEY WORDS
Communication Systems, Communications Protocol, Al-
gorithm Partitioning, Dynamic Algorithm Analysis, C
Code Analysis, Network Processor.

1 Introduction and motivation

In the past few years the available network bandwidth in
local area networks has grown much faster than the com-
puting power of the connected high end computers. Thus
even such high end PCs or servers cannot fully utilize local
high speed networks [6]. An approach to solve this problem
is partitioning the data path of the network stack and imple-
ment it on an intelligent network card based on an Intel IXP
[5] network processor [1, 7].

Even if such a network processor needs special pro-
gramming techniques, the reuse of existing and proven net-
work stacks is much more efficient than the development
of a completely new design for the very reason that a mod-
ern protocol stack is very complex. On the other hand due
to its complexity partitioning of the data path and synchro-
nization of signalling data between host system and net-
work card are difficult too. Due to different memory types
and buses on a IXP based network card we need support
for the decision, which memory to use for each of the data
structures.

In this paper we present an approach for a tool sup-
ported partitioning of the data path of a network stack and
a collector for synchronization data. The main emphasis is
to drastically reduce development periods connected with
an improvement of network throughput and latency due to
the usage of intelligent network cards based on network
processors.

In the following chapter we describe a generic ap-
proach for a tool supported C source code partitioning as
well as collection and rating of synchronization data even
for complex implementations. Next we evaluate this ap-
proach with a prototype implementation of a set of parti-
tioning support tools. Since a fully automatic partitioning
and memory type decision is not reasonable, we discuss
in the following chapter visualization possibilities of the
partitioning results and it’s usage for partitioning complex
implementations. After classifying our approach in com-
parison to related work, we finally conclude our results and
address future work.

2 Partitioning and optimization approach

First step for data path partitioning – independent whether
either manual or automatic – should be the identification of
the CPU consuming data path. When analyzing a relatively
small amount of source code, manual procedure is practi-
cable. For more complex source code like the Linux kernel
[9] a more automatic way like profiling methods based on
Oprofile [11], DProbes [4] or the Linux Trace Toolkit [10]
should be used [6, 7].

Based on the profiling results all depending functions
and subfunctions of the data path have to be partitioned.
Especially if the implementation uses a wide range of dy-
namic functions and variables, a simple source code analy-
sis for partitioning is impossible. The network stack of the
Linux kernel for example uses these techniques very fre-
quently.

The main idea to circumvent these problems is to use
an automatic debugger, which executes the program step
by step and analyzes the output of the debugger as well

433-114 311

melissa

Start debugger

Execute codeline

Analyze debugger output

Analyze codeline

Analyze memory accesses

End of program

End debugger

no

yes

Figure 1. Analysis approach

as interpretes the active source code line in view of mem-
ory accesses. Figure 1 illustrates this approach. The main
advantage of this procedure are the complete knowledge
of data structures, their access, frequency of access and
needed functions respectively subfunctions.

In addition to the partitioning results due to the possi-
bilty of creating a time - memory-access - graph, statements
concerning independent algorithm parts without memory
read/write collisions can be made. These results can be
used for dividing the algorithm onto the up to 16 micro-
engines1 of the IXP network processor.

On the other hand the input data has to be selected
very carefully because of the heuristic charateristics of this
method. Thus certain conditional forks could be not be par-
titioned even though they should be. The only possibility
to avoid this, is to run the debugging session several times
with all possible variations of input data.

3 Implementation of partitioning approach

3.1 General implementation

For the implementation of the approach the GNU debug-
ger GDB [3] was chosen due to its flexible and powerful
command line. For controlling the debugger and interpret-
ing the debugging output a Perl [12] script was developed.
The following Perl modules were used for the controlling
script:

Devel::GDB – as a frontend for GDB for controlling the
debugging process

1Microengines are parts of the processor with a special instruction set
for network packet processing, which are able to run code independently

Parse::RecDescent – a module for creating a recursive
grammar for C source interpretation

Parse::RecDescent::Consumer – a helper module for the
RecDescent module

3.2 Automatic debugging

Start GDB

Analyze global data structures Set initial breakpoint

Start program

Analyze GDB output

Get initial frame info

Expand C macros

Analyze actual source line

Get data structure address and content

Read access

Write access

More codelines
to run?

Execute next program line

Get current frame info

New frame?

New function context:
Analyse local data structures

no

yes

yes

Figure 2. Flowchart of automatic debugger

The main flow of the final automatic debugging pro-
cess is illustrated in figure 2. At first the debugger is started
and all global data structures are recognized and logged.
Since a step-by-step execution of the code is only possi-
ble if the program to be analyzed is running, next an initial
breakpoint – if not defined otherwise, it’s the main function
– is set and the program started. After that the initial frame
information is captured to detect function calls and its local
data structures.

Thereafter the next source code line to be executed is
analyzed. At first the source code line and its used C macros
have to be expanded. However this feature is only available,
when compiling the source code with ‘-gdwarf-2 -g3’ to
ensure the compiler includes preprocessor information in
the debugging information.

After macro expansion the source code line is ana-
lyzed by a recursive grammar to extract all read and write
accesses to data structures. Now the memory address, the
content and the type of the access to the data structures are
logged for later interpretation – the content of the changed
variables is logged after execution of the code line.

312

If the programm is not finished yet or the final line to
be analyzed is not reached yet, the next code line is exe-
cuted and the current frame information is captured to de-
tect a function call and therefore changed local data struc-
tures, which also have to be logged.

Now, the debugger output of the last executed step is
analyzed and so on.

If there are several instructions on a source code line
or one complex instruction is splitted onto several lines,
the output of the GDB is insufficiently exact to achieve de-
tailed analysis. Hence the source code is reordered by a
preprocessor before compiling to ensure there is exactly on
instruction per source code line.

3.3 C parsing grammar

As opposed to a common C parsing grammar, the needed
grammar must be able to interpret even fragments of cor-
rect C code and to extract all read and modified data struc-
tures with one or more of the following characteristics:

• plain variables

• de-referenced pointers

• structures

• arrays and array indexes

On the other hand the used grammar does not need to
check if the syntax of the code line is correct – we just trust
in the C compiler. The implemented recursive grammar
uses the Perl module RecDescent, a top-down recursive-
descent text parser.

Main parts of the grammar are illustrated in figure 3.

Instruction An instruction line can consist of C com-
mands, assign instructions or function calls, separated
by one of the characters “;”, “{“ or “}”.

C Command For correct code interpretation only a subset
of all C commands has to be handled by an extra rule:
comparisons, while loops and the switch construct.

Assign Instruction The rule for the assign instruction is
for detection of write accesses to data structures. Ev-
ery data structure left from an assign operator defined
by the assign rule respectively every incremented or
decremented data structure is marked with write ac-
cess.

Expression The most complex rule of the grammar is the
definition of an expression. At first it has to handle
negates and type casts. Next case to be handled are
conditional expressions. After that there is a check if
a variable or a constant resp. a function call is con-
nected via an operator with an assign instruction or an
expression. Thereafter the expression is checked for

C_Command

Assign_Instruction

Function_Call

;

{

}

Instruction Cast Assign_Instruction

Array

Variable
Assign

Assign_Instruction

Expression

Array

Variable

++

––

++

––

Array

Variable

Assign_Instruction

–

~

!

Expression

Cast Expression

(
Assign_Instruction

Expression
) ?

Assign_Instruction

Expression
:

Assign_Instruction

Expression

Variable_Number

Function_Call
Operator

Assign_Instruction

Expression

(
Assign_Instruction

Expression
)

Operator
Assign_Instruction

Expression

Function_Call

Variable_Number

Expression

Array

Variable

Number

String

Char

Variable_Number

Basic_Operator
=

Assign

+

–

*

/

%

^

Basic_Operator

Basic_Operator

<<

>>

||

&&

&

|

Operator

If_Else

While

Switch_Case

C_Command

*

&
Name

.

–>

Variable

Name (

Assign_Instruction

Expression

,

;

)

Function_Call

Variable [
Assign_Instruction

Expression
]

[

.

–>

.

–>
Variable

Array

Figure 3. Cut-out of recursive grammar

313

#define PI 3.14159265

int main() {
float radius = 10.0;
float height = 5.0;
float volume, diameter, area, circumfence;

diameter = 2.0 * radius;
area = radius * radius * PI;
circumfence = diameter * PI;
volume = area * height;

printf("Cylinder\n");
printf("Diameter: %f\n", diameter);
printf("Footpoint: %f\n", area);
printf("Circumfence: %f\n", circumfence);
printf("Volume: %f\n", volume);

volume = (PI / 3.0) * radius * radius * radius * height;

printf("\nCone\n");
printf("Volume: %f\n", volume);

return 0;
}

Figure 4. Demonstration program

a parenthesis construct with or without another op-
eration. Finally an expression may consist of a plain
function call or a variable resp. constant.

Every data structure found in an expression is marked
with read access.

Variable Number This rule defines all possibilities for
data structures or constants, arrays, variables, num-
bers, strings and characters.

Assign The assign rule is for definition of a plain assign-
ment or an assignment together with an basic opera-
tion.

Basic Operator A basic operator is one of the operations
“+”, “-”, “*”, “/”, “%”, “ˆ” that may be connected with
an assignment.

Operator The rule for an operator checks for a basic op-
erator and bit or logical operations.

Function Call A function call may consist of a function
name followed by a left parenthesis, an optional list of
parameters and a right parenthesis.

Variable A variable name is either a plain name or a list
of names connected with a “.” or a “->” depending of
the type of the structure. A variable name can also start
with referencing (“*”) or de-referencing (“&”) signs.

Array Finally an array construct may consist of a variable
and one or more indexes – an assign instruction or an
expression – each embedded in brackets or in case of
a structure a list of such basic arrays connected with a
“.” or a “->” and a possible variable ending.

3.4 Debugger output

The run of the automatic debugger results in a XML output
with detailed information about every executed code line:

0:
create: 0x8048564 = (const int)131073 (_IO_stdin_used)

1: float radius = 10.0;
create: 0xbffff8c4 = (float)10 (radius)
write: 0xbffff8c4 = (float)10 (radius)

2: float height = 5.0;
create: 0xbffff8c0 = (float)5 (height)
write: 0xbffff8c0 = (float)5 (height)

3: diameter = 2.0 * radius;
create: 0xbffff8b8 = (float)20 (diameter)
read: 0xbffff8c4 = (float)10 (radius)
write: 0xbffff8b8 = (float)20 (diameter)

4: area = radius * radius * 3.14159265;
create: 0xbffff8b4 = (float)314.159271 (area)
read: 0xbffff8c4 = (float)10 (radius)
write: 0xbffff8b4 = (float)314.159271 (area)

5: circumfence = diameter * 3.14159265;
create: 0xbffff8b0 = (float)62.831852 (circumfence)
read: 0xbffff8b8 = (float)20 (diameter)
write: 0xbffff8b0 = (float)62.831852 (circumfence)

6: volume = area * height;
create: 0xbffff8bc = (float)1570.79639 (volume)
read: 0xbffff8b4 = (float)314.159271 (area)
read: 0xbffff8c0 = (float)5 (height)
write: 0xbffff8bc = (float)1570.79639 (volume)

7: printf("Cylinder\n");
8: printf("Diameter: %f\n", diameter);

read: 0xbffff8b8 = (float)20 (diameter)
9: printf("Footpoint: %f\n", area);

read: 0xbffff8b4 = (float)314.159271 (area)
10: printf("Circumfence: %f\n", circumfence);

read: 0xbffff8b0 = (float)62.831852 (circumfence)
11: printf("Volume: %f\n", volume);

read: 0xbffff8bc = (float)1570.79639 (volume)
12: volume = (3.14159265 / 3.0) * radius * radius * radius * height;

read: 0xbffff8c4 = (float)10 (radius)
read: 0xbffff8c0 = (float)5 (height)
write: 0xbffff8bc = (float)5235.98779 (volume)

13: printf("\nCone\n");
14: printf("Volume: %f\n", volume);

read: 0xbffff8bc = (float)5235.98779 (volume)
15: return 0;
16: }

Figure 5. Output of automatic debugger

• source code line with expanded macros and file infor-
mation

• created data structures with information about type,
name, memory address and if availabe, the content

• read data structures with information about name,
memory address and content

• written data structures with information about name,
memory address and new content

• in case of a function call, function name, parameters
as created data structures

On the basis of this XML output, all executed code
lines needed for this algorithm are logged. Additionally a
summary of needed data structures and the frequency of
accesses is available.

Figure 4 shows a simple C program for demonstration
of the automatic debugger. It calculates some simple values
for a cylinder and a cone.

The analysis output of the debugging process is
shown in figure 5. For every executed code line – marked
with a counter – the created, read and written variables are
quoted including memory address, type, name and value.
Since the name of the data structure is not expressive
enough, all logging is indexed by the memory address of
the data. So even C pointer magic with referenced and de-
referenced variables and access to one specific memory ad-
dress by different variables with different names can be de-
tected and logged.

314

Address: bffff8bc
create: 6
type: float

read: 11 :: volume = 1570.79639
read: 14 :: volume = 5235.98779
write: 6 :: volume = 1570.79639
write: 12 :: volume = 5235.98779

Address: bffff8c0
create: 2
type: float

read: 6 :: height = 5
read: 12 :: height = 5
write: 2 :: height = 5

Address: bffff8b0
create: 5
type: float

read: 10 :: circumfence = 62.831852
write: 5 :: circumfence = 62.831852

Address: bffff8c4
create: 1
type: float

read: 3 :: radius = 10
read: 4 :: radius = 10
read: 12 :: radius = 10
write: 1 :: radius = 10

Address: bffff8b4
create: 4
type: float

read: 6 :: area = 314.159271
read: 9 :: area = 314.159271
write: 4 :: area = 314.159271

Address: bffff8b8
create: 3
type: float

read: 5 :: diameter = 20
read: 8 :: diameter = 20
write: 3 :: diameter = 20

Address: 8048564
create: 0
type: const int

Figure 6. Summary of memory accesses

The summary of memory accesses is shown in figure
6. For every memory address it lists the data type, code line
of first usage (creation) and all the read respectively write
accesses with the corresponding code lines.

On the basis of this summary, all data needed for syn-
chronization between a parent and the separated algorithm,
that is implemented on the network processor, is available.

Even such a simple and short programm generates a
relatively complex output; if there are more instructions
with more data structures, the output of the analysis must
be visualized in another way.

4 Visualization and usage of analysis results

4.1 Visualization of analysis results

Based on the XML output of the debugger, detailed graphs
about program or algorithm function and memory accesses
can be created.

Figures 7 and 8 show an algorithm and memory read
respectively write access graph for the program shown in
figure 4. Every executed code line – placed on the left – has
a connection to every accessed memory address – placed on
the right –.

Even if the program is really short and clear, the graph
to illustrate the access to data structures gets rapidly com-
plex especially when combining both graphs. At the end
the graphs are too complicated to get results for partition-
ing and especially for parallelizing.

Other problems are the usage of conditional forks and
dynamic dependences of input data in the algorithm imple-

Figure 7. Algorithm and memory read access graph

Figure 8. Algorithm and memory write access graph

mentation. To achieve an optimal prognosis for partitioning
and to get all relevant code lines in that case, the automatic
debugging has to be run multiple times with all possible in-
put data. Now all results can be compared – the frequency
of the different executed code lines reflects the most impor-
tant lines to be implemented on the network processor. To
find the best moment for resynchronization with the host
implementation the debugging system has to run with spe-
cial input data to force a situation for a planned fallback
from the network processor implementation to the host sys-
tem.

4.2 Usage of analysis results

The main application for this approach is to get partitioning
results for highly complex implementations, for instance a
network protocol stack implementation with the aim of an
optimal as possible implementation on a network proces-
sor.

Therefore a more interactive analysis is needed since
the visualization as done in figures 7 and 8 gets confusing
for an analysis for instance of a protocol stack. One possi-
bility is to use a special graph browser with the following
functionality:

• If code lines are tagged manually, every conflicting
line with variable write access to one of the accessed
data structures, used in the marked area, is high-
lighted. On that basis it is possible to find independent

315

code parts and the latest moment of synchronization
of parallel running parts of the algorithm.

• On the basis of identified conflicts concerning mem-
ory write accesses, suggestions for possible partition-
ing onto the microengines are made.

Final aim of this procedure is to divide the code onto
all available microengines of the network processor and de-
fine all synchronization points and data.

A fully automatic parallelizing is possible as well, but
should only be an assistance for the interactive browsing
due to special needs of the microengines of the network
processor.

5 Related work

An approach for software/ hardware partitioning of C code
is described in [8, 2]. Their aim is to accelerate the execu-
tion of code using dynamically reconfigurable processors.
The original Nimble compiler [8] focuses on partitioning
of only loops and their optimization. However the Garp C
compiler [2] tries to partition the code into basic blocks
without branches into or out of the middle. For an acceler-
ation of a network stack using network processors this ap-
proach is too fine grained with no predication on frequency
of memory accesses.

A data structure analysis of a C implementation is pre-
sented in [13]. However, they only capture and explore sin-
gle program states but offer a three dimensional visualiza-
tion of all used data structures of a program at one specific
state. For a partitioning approach for network processors
the frequency and moment of memory accesses is missing.

Due to their object oriented focus approaches for as-
pect oriented programming and object oriented approaches
for visualization and development of programs are not
transferable to dynamic C code analysis.

6 Conclusions and future work

For easing the burden of network protocol processing on
today’s host processors partitioning approaches with usage
of protocol offload engines are useful. However partition-
ing an existing software implementation of a protocol stack
is too complex for manual procedure. Using an automatic
debugger for data collection is a possible approach for al-
gorithm and C code analysis. These data about code execu-
tion and moment and frequency of memory access are the
basis for optimal algorithm partitioning on microengines of
a network processor.

Since the automatic debugger and especially the C
grammar is written in Perl, timeouts in protocol processing
may occur on code execution and analysis. Therefore the
debugger has to be optimized and accelerated itself. Future
work also includes the analysis and complete partitioning
of the Linux TCP/IP network stack for the IXP network
processor.

References

[1] Mirko Benz and Ralf Lehmann. TCP Acceleration
based on Network Processors. In IASTED Interna-
tional Conference on Communications, Internet, and
Information Technology (CIIT), St. Thomas, US Vir-
gin Islands, 2002.

[2] Timothy J. Callahan, John R. Hauser, and John
Wawrzynek. The Garp Architecture and C Compiler.
Computer, 33:4:62–69, April 2000.

[3] GDB: The GNU Project Debugger –
http://www.gnu.org/software/gdb. Internet WWW
document.

[4] IBM Linux Technology Center. Dynamic
Probes for Linux – http://oss.software.ibm.com/-
developer/opensource/linux/projects/dprobes/, 2002.
Internet WWW document.

[5] Intel Corp. Intel Network Processors –
http://www.intel.com/design/network/products/-
npfamily/. Internet WWW document.

[6] Ralf Lehmann and Mirko Benz. Analysis of TCP/IP
Protocol Processing in Gigabit Networks. In Proceed-
ings of the 2002 WSEAS International Conference
on Information Security, Hardware/Software Code-
sign, E-Commerce and Computer Networks, Rio de
Janeiro, Brazil, October 2002.

[7] Ralf Lehmann, Mirko Benz, Stephan Groß, and Maik
Hampel. IPsec Protocol Acceleration using Network
Processors. In IASTED International Conference on
Communications, Internet, and Information Technol-
ogy (CIIT), Scottsdale, Arizona, November 2003.

[8] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure,
and J. Stockwood. Hardware-Software Co-Design
of Embedded Reconfigurable Architectures. In Pro-
ceedings of the 37th Design Automation Conference,
pages 507–512, Los Angeles, CA, 2000.

[9] The Linux Kernel Archives – http://www.kernel.org.
Internet WWW document.

[10] Opersys. The Linux Trace Toolkit –
http://www.opersys.com/LTT/, 2002. Internet
WWW document.

[11] OProfile – http://oprofile.sourceforge.net. Internet
WWW document.

[12] The Perl Directory – http://www.perl.org. Internet
WWW document.

[13] T. Zimmermann and A. Zeller. Visualizing Mem-
ory Graphs. In Proceedings of the Dagstuhl Seminar
01211 ”Software Visualization”, Dagstuhl, Germany,
May 2001.

316

